Application of a yeast estrogen screen in non-biomarker species Varicorhinus barbatulus fish with two estrogen receptor subtypes to assess xenoestrogens.

نویسندگان

  • Keng-Yen Fu
  • Chung-Yuan Chen
  • Whei-Meih Chang
چکیده

Xenoestrogens can interfere with normal estrogen signaling by competitively binding to the estrogen receptor (ER) and activating transcription of target genes. In this study, we cloned the estrogen receptor alpha (vbERalpha) and beta 2 (vbERbeta2) genes from liver of the indigenous Taiwanese cyprinid fish Varicorhinus barbatulus and tested the direct impact of several xenoestrogens on these ERs. Transcriptional activity of xenoestrogens was measured by the enzymatic activity of estrogen responsive element (ERE)-containing beta-galactosidase in a yeast reporter system. The xenoestrogens tested were phenol derivatives, DDT-related substances, phthalic acid esters, and polychlorinated biphenyls, with 17beta-estradiol (E2) as a subjective standard. The phenol derivatives [4-nonylphenol (4-NP), 4-t-octylphenol (4-t-OP) and bisphenol A (BPA)] exhibited significant dose-dependent responses in both ligand potency and ligand efficiency. Consistent with yeast assays using human or rainbow trout ERs, we observed a general subtype preference in that vbERalpha displayed higher relative potencies and efficiencies than vbERbeta2, although our assays induced a stronger response for xenoestrogens than did human or trout ERs. Whereas 4-NP and 4-t-OP have similar EC50 values relative to E2 for both ER subtypes, the strong estrogenic response of BPA markedly differentiates vbERalpha from vbERbeta2, suggesting possible species-specific BPA sensitivity. We report that the ameliorative yeast tool is readily applicable for indigenous wildlife studies of the bio-toxic influence of xenoestrogens with wildlife-specific estrogen receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens.

Xenoestrogens, such as o,p'-DDT and octyl phenol (OP), have been associated with reproductive abnormalities in various wildlife species. Xenoestrogens mimic the natural estrogen 17 beta-estradiol and compete for binding to the estrogen receptor. Even though the affinity of o,p'-DDT and OP for the estrogen receptor is approximately 1000-fold lower than 17 beta-estradiol, the actions of xenoestro...

متن کامل

Bridging the Gap From Screening Assays to Estrogenic Effects in Fish: Potential Roles of Multiple Estrogen Receptor Subtypes

This study seeks to delineate the ligand interactions that drive biomarker induction in fish exposed to estrogenic pollutants and provide a case study on the capacity of human (h) estrogen receptor (ER)-based in vitro screening assays to predict estrogenic effects in aquatic species. Adult male Japanese medaka (Oryzias latipes) were exposed to solutions of singular steroidal estrogens or to the...

متن کامل

Estrogens Receptors-New Players in Spermatogenesis

The mammalian testis is a complex organ that serves two important functions, synthesis of steroids, with significant amount of estrogenic hormones produced and production of spermatozoa. Estrogen receptors (ERs) are expressed in cells of the testis as well as the epididymal epithelium. We have demonstrated that estrogen receptor expression is higher in reproductive tissues as compared to non-re...

متن کامل

The effect of intrahippocampal injection of diarylpropionitrile, a selective estrogen receptor-beta agonist, on passive avoidance learning

Introduction: Neurohormones like testosterone and estradiol have an important role in learning and memory. The hippocampus is essentially involved in learning and memory, and is known to be a target for estradiol actions. Estrogen receptors (ERs) are highly expressed in CA1 of rat hippocampus, and mediate the effects of estrogen on learning and memory. Estradiol receptor belong to a family ...

متن کامل

Estrogen receptors: orchestrators of pleiotropic cellular responses.

Estrogen receptors (ERs) orchestrate both transcriptional and non-genomic functions in response to estrogens, xenoestrogens and signals emanating from growth factor signalling pathways. The pleiotropic and tissue-specific effects of estrogens are likely to be mediated by the differential expression of distinct estrogen receptor subtypes (ERalpha and ERbeta) and their coregulators. The recent an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicology in vitro : an international journal published in association with BIBRA

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2007